HyperFlow is a visual development and orchestration platform for building production-ready generative AI applications. Think of it as a no-code/low-code IDE for AI workflows, combined with a robust execution engine and hosting infrastructure.
Instead of hard-coding AI logic, you visually design flow-graphs in the HyperFlow IDE - directed graphs where nodes represent AI operations (LLM calls, RAG queries, data transforms, etc.). Once published, these flow-graphs become production AI backends accessible via a RESTful Control API.
In practice:
┌─────────────────────────────────────────────────────────┐
│ Your Custom Application │
│ (React/Vue/Mobile App with Custom UI) │
└────────────────────┬────────────────────────────────────┘
│ Control API
│ (REST + Long-polling)
↓
┌─────────────────────────────────────────────────────────┐
│ HyperFlow Platform (Backend) │
├─────────────────────────────────────────────────────────┤
│ Production Flow-Graph Engine │
│ ├── Published Flow-Graph Execution │
│ ├── Session Management & State │
│ └── Control API (start, progress, streaming) │
├─────────────────────────────────────────────────────────┤
│ Service Orchestration Layer │
│ ├── 50+ Flow-Graph Nodes │
│ ├── 50+ Service Adapters (LLMs, Vector DBs, etc.) │
│ └── ML Worker Job Queue (Python, RabbitMQ) │
├─────────────────────────────────────────────────────────┤
│ IDE Flow-Graph Engine (Development Mode) │
│ └── Visual Editor, Debugger, Test Runner │
└─────────────────────────────────────────────────────────┘
Visual workflows that orchestrate AI operations:
Example Flow-Graph:
[User Input] → [Search Knowledge DB] → [Call LLM with Context] → [Response]
↓ ↑
└────────[Generate Follow-up]─────────────┘