Overview

FAISS (Facebook AI Similarity Search) is a high-performance vector database service optimized for efficient similarity search and clustering of dense vectors. This service provides local, in-memory vector storage with advanced indexing algorithms for fast similarity searches, making it ideal for development, testing, and high-performance local applications.

Service Information

Property Value
Service Name Create FAISS vector DB
Status Enabled
Compatible Nodes Create knowledge DB, Real-time knowledge injector

When to Use This Service

FAISS Vector DB is ideal for:

Input Requirements

Parameters

Index Configuration

Parameter Type Default Options Description
Index type Choice Inverted index Inverted index, HNSW Vector indexing algorithm for similarity search
Similarity metric Choice Cosine Euclidean distance, Inner product, Cosine Distance metric for vector comparisons
Quantization Choice None Product quantization, None Vector compression method to reduce memory usage

Index Type Options

Inverted Index