Overview

Cohere's embedding service provides multilingual text-to-vector conversion with specialized models optimized for cross-language semantic understanding. This service excels at creating consistent embedding spaces across multiple languages and offers advanced input type handling.

Service Information

Property Value
Service Name Cohere LLM Embed
Status Enabled
Compatible Nodes Create embedding vectors, Real-time knowledge injector

API Requirements

Available Models

Model availability depends on your HyperFlow configuration and Cohere API access. Check the Embedding model dropdown in the Create embedding vectors node for currently available options.

Cohere typically offers both English-optimized and multilingual embedding models.

When to Use

Parameters

Parameter Type Default Description
Embedding model Choice embed-multilingual-v3.0 Select the Cohere embedding model
Input type Choice search_document Optimize embedding for search documents or queries

Input Type Options