This guide shows how to build custom chatbot or AI applications that use HyperFlow published flow-graphs as their backend. You'll learn the Control API patterns, state management, streaming responses, and file uploads by examining the production-tested implementation patterns from HyperFlow's embeddable chatbot.
What You'll Build: A custom client application (web, mobile, or desktop) that communicates with published HyperFlow flow-graphs to provide an AI assistant experience similar to ChatGPT, Claude, or custom conversational UIs.
Prerequisites:
HyperFlow uses a long-polling architecture for real-time bidirectional communication:
┌─────────────┐ ┌─────────────────┐
│ Client │ │ HyperFlow API │
│ App │ │ (Flow-graph) │
└─────┬───────┘ └────────┬────────┘
│ │
│ 1. POST /control/start │
│ {flowGraphID, queryParams} │
│─────────────────────────────────────────────>
│ │
│ {sessionID, stepIndex, responses:[...]} │
<─────────────────────────────────────────────│
│ │
│ 2. POST /control/progress (long-poll) │
│ {sessionID, stepIndex, progress:[...]} │
│─────────────────────────────────────────────>
│ │
│ [Server waits for flow-graph] │
│ ...holding... │
│ │
│ {sessionID, stepIndex, responses:[...]} │
<─────────────────────────────────────────────│
│ │
│ 3. Immediately send next /control/progress │
│─────────────────────────────────────────────>
│ (repeat) │
Key Points:
sessionID// Base URL: <https://hyperflow-ai.com> or your deployment
const controlAPI = {
start: "/api/flowgraph/control/start", // Initialize session
progress: "/api/flowgraph/control/progress", // Send/receive updates
streaming: "/api/flowgraph/control/streaming", // Poll for LLM streaming
};